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1 Introduction

Let us consider mean-variance portfolio optimization problem stated as:
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where + is a risk aversion coefficient. This problem has an explicit solution,
which can be derived using Lagrange multipliers:
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2 Trading Cost

Let us now consider mean-variance portfolio optimization with trading cost:
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Since absolute value is a non-differentiable function, we cannot solve this
problem using Lagrange multipliers. Let us now reformulate this problem by
splitting the trades w — wq into the buy and sell components. We will then
be able to arrive at the general quadratic optimization problem which can be
solved using an efficient iterative method.

Let w —wog = b— s with b, s > 0 being the buy and sell orders. We can now
rewrite the porfolio optimization problem as follows:
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Or alternatively as a minimization problem:
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3 Full Problem

Let us now combine b and s into a single vector of orders:
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We can now rewrite the minimization problem as:
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This problem can now be solved using a quadratic optimization algorithm
(for example, the interior point method).

4 Numerical Trick

The matrix ¢ is positive semi-definite (because C is positive definite, and @
is rank defficient). In ideal, ® will have half of the eigenvalues equal to zero.
However, due to the round-off error, these eigenvalues can be in fact calcu-
lated as small negative or positive values, which will prevent the application of
the quadratic optimization algorithm, which requires a positive (semi-)definite
quadratic form. A simple trick would be to make ® positive definite by adding
small positive values to its diagonal, and solving the modified optimization prob-
lem with @ = ® + cI. Provided ¢ is small relative to the elements of C, the
solution will not differ much from the solution of the unmodified problem.



5 Two Step Trick

The full optimization problem setup involves a quadratic form ® of size 2K,
where K is the number of stocks. Algorithmic complexity of solving the quadratic
optimization problem with a positive definite quadratic form is, in general, of
polynomial time. Therefore, the problem with dimensionality of 2K might in
general require much greater time than the time, which would be required to
solve 2 problems with of dimensionality K. This is in fact confirmed in prac-
tice, with 2K -sized optimization problem solution taking as much as x8 time
required to solve K-sized optimization problem.

In order to speed up the optimization process, the following two step trick
can be used. In the first step, we solve the unconstrained problem without cost.
Using the solution from the first step, we can identify in which direction does the
unconstrated optimization wants to change the positions. In the second step,
we restrict position changes to the direction identified in the first step. Since
we now know the direction of position changes, we can introduce the trading
cost for each stock individually, setting it to positive value for stocks that we
want to buy, and to negative value for stocks that we want to sell. Solving this
second optimization problem, we identify the new positions, taking into account
the trading cost.

This approach introduces approximation, since we first identify the direction
of position changes without taking into account the trading cost. In practice,
this has very little effect on the final solution compared to the solution of the
full 2K-sized problem, resulting in almost identical optimized positions and
portfolio performance. However, this approach enables improving the algorith-
mic complexity of portfolio optimization by up to an order of magnitude, and
thus respectively decreasing the backtest (and real-time portfolio optimization,
if required) time by an order or magnitude.



