Articles


🎲 Gibbs Sampling for LDA with Asymmetric Dirichlet Priors

The original articles on LDA (Latent Dirichlet Allocation) assume symmetric Dirichlet priors on topic-words and document-topics distributions. This means that a-priori we assume that all topics are equally likely to appear within each document, and all words are equally likely to appear within each topic. However, if we want to …